首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1005篇
  免费   260篇
  国内免费   216篇
测绘学   10篇
大气科学   3篇
地球物理   780篇
地质学   532篇
海洋学   123篇
综合类   19篇
自然地理   14篇
  2024年   4篇
  2023年   9篇
  2022年   20篇
  2021年   31篇
  2020年   40篇
  2019年   58篇
  2018年   49篇
  2017年   44篇
  2016年   39篇
  2015年   55篇
  2014年   57篇
  2013年   53篇
  2012年   85篇
  2011年   83篇
  2010年   72篇
  2009年   79篇
  2008年   82篇
  2007年   98篇
  2006年   99篇
  2005年   92篇
  2004年   66篇
  2003年   76篇
  2002年   46篇
  2001年   32篇
  2000年   26篇
  1999年   16篇
  1998年   16篇
  1997年   14篇
  1996年   8篇
  1995年   10篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
排序方式: 共有1481条查询结果,搜索用时 156 毫秒
31.
损伤指数是判断结构或构件经受地震作用后是否破坏、评价结构或构件破坏程度的重要指标,是对震后受损结构进行安全评估和修复加固的重要理论依据。基于40组钢筋混凝土柱的试验结果,对国内外7种较具代表性的损伤模型进行了对比分析。研究结果表明:对于同一试件,不同损伤模型计算得到的损伤指标差异较大,损伤曲线发展趋势亦不同;基于能量的损伤模型多表现出前期增长速度快和后期增长速度慢的上凸趋势,而基于变形和能量组合形式的双参数损伤模型多表现出前期增长速度慢和后期增长速度快的上凹趋势;Park-Ang模型及其改进形式能够较好地反映构件层次的损伤发展过程,但未知参数较多,计算过程较复杂,不利于整体结构层次的震害评估;从能量耗散原理角度提出的损伤模型更符合整体结构抗震的本质,未知参数少且计算过程简单,但存在边界条件的界定不明确的缺陷,因此还需要做更深入的研究。  相似文献   
32.
海水海砂混凝土双K断裂参数的确定   总被引:1,自引:1,他引:0  
采用尺寸为515 mm×100 mm×100 mm初始缝高比从0.1变化至0.8的三点弯曲梁试件,利用试验测得起裂荷载Pini、最大荷载Pmax及对应的裂缝口张开位移CMODc等参数,研究了缝高比a0/h对海水海砂混凝土双K断裂参数的影响。并以相同配合比的淡水河砂梁作为对照组,进一步研究了海砂海水混凝土双K断裂参数与普通混凝土之间的关系。结果发现海水海砂混凝土断裂参数在a0/h=0.25~0.7范围内时可以认为是一常数;海水海砂混凝土梁断裂参数比相同配合比情况下的淡水河砂梁大且对边界影响更加敏感。  相似文献   
33.
高俊  党发宁  马宗源 《岩土力学》2020,41(5):1730-1739
随着沥青混凝土心墙堆石坝的快速发展,超高沥青混凝土心墙堆石坝建设迎来了前所未有的机遇,但随着坝高的增加,心墙的安全挑战也变得异常突出。基于应力水平的定义,提出降低超高沥青混凝土心墙高应力水平的措施,依托心墙应力水平的敏感性研究,推算了独立满足和综合满足心墙屈服剪切破坏控制标准的心墙材料强度参数(最敏感材料参数)取值范围。研究表明,心墙应力水平随坝高和河谷岸坡坡比的增加而显著增大;心墙破坏比 、黏聚力 和内摩擦角 属于高敏感性参数;增大心墙破坏比 、黏聚力 和内摩擦角 能够显著地降低心墙应力水平;推荐适宜建设超高沥青混凝土心墙堆石坝的心墙破坏比 、黏聚力 和内摩擦角 取值范围: 0.8、 0.4 MPa和 31.5°(坝高 200 m),且随坝高的增长梯度按5%/25 m、15%/25 m和5%/25 m进行调整。  相似文献   
34.
Tephra shards for electron probe microanalysis are most efficiently extracted from peat using acid digestion, which removes organic material that hinders density separation methods. However, strong acids are known to alter glass chemical compositions, and several studies have examined how acid digestion affects rhyolitic volcanic glass. The focus on rhyolitic tephra in these studies leaves considerable uncertainty, as the dissolution rates of natural glasses (including tephra) are determined by the chemical composition and surface area/volume ratio, both of which vary in tephra deposits. Here, we use duplicate samples of basaltic, trachydacitic and rhyolitic tephra to examine physical and geochemical alteration following acid digestion. Scanning electron microscope imagery reveals no discernible degradation of glass surfaces, and electron probe microanalysis results from duplicate samples are statistically indistinguishable. These findings suggest the acid digestion protocol for organic peats does not significantly alter glass geochemistry regardless of shard morphologies or geochemical compositions.  相似文献   
35.
For civil engineering structures with a tightness role, structural permeability is a key issue. In this context, this paper presents a new proposition of a numerical modelling of leakage rate through a cracked concrete structure undergoing mode I cracking. The mechanical state of the material, considered in the framework of continuum mechanics based on finite element modelling, is described by means of the stress‐based nonlocal damage model which takes into account the stress state and provides realistic local mechanical fields. A semi‐discrete method based on the strong discontinuity approach to estimate crack opening is then considered in the post‐treatment phase. Using a Poiseuille's like relation, the coupling between the mechanical state of the material and its dry gas conductivity is performed. For validation purposes, an original experimental campaign is conducted on a dry concrete disc loaded in a splitting setup. During the loading, gas conductivity and digital image correlation analysis are performed. The comparison with the 3D experimental mechanical global response highlights the performance of the mechanical model. The comparison between crack openings measured by digital image correlation and estimated by the strong discontinuity method shows a good agreement. Finally, the results of the semi‐discrete approach coupled with the gas conductivity compared with experimental data show a good estimation of the structural conductivity. Consequently, if the mechanical problem is well modelled at the global scale, then the proposed approach provides good estimation of gas conductivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
36.
Earthquake‐induced deck‐abutment contact alters the boundary conditions at the deck level and might activate a different mechanical system than the one assumed during the design of the bridge. Occasionally this discrepancy between the assumed and the actual seismic behavior has detrimental consequences, for example, pier damage, deck unseating, or even collapse. Recently, an insightful shake‐table testing of a scaled deck‐abutment bridge model 1 , showed unexpected in‐plane rotations even though the deck was straight. These contact‐induced rotations produced significant residual displacements and damage to the piers and the bents. The present paper utilizes that experimental data to examine the validity and the limitations of a proposed nonsmooth dynamic analysis framework. The results show that the proposed approach satisfactorily captures the planar rigid‐body dynamics of the deck which is characterized by deck‐abutment contact. The analysis brings forward the role of friction on the physical mechanism behind the rotation of the deck, and underlines the importance of considering the frictional contact forces during deck‐abutment interaction even for straight bridges, which typically are neglected. Finally, the paper investigates the sensitivity of the rotation with respect to macroscopic contact parameters (i.e., the coefficient of friction and the coefficient of restitution). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
37.
The objective of this study was to investigate the effects of near-fault ground motions on substandard bridge columns and piers. To accomplish these goals, several large scale reinforced concrete models were constructed and tested on a shake table using near- and far-field ground motion records. Because the input earthquakes for the test models had different characteristics, three different measures were used to evaluate the effect of the input earthquake. These measures are peak shake table acceleration, spectral acceleration at the fundamental period of the test specimens, and the specimen drift ratios. For each measure, force-displacement relationships, strains, curvatures, drift ratios, and visual damage were evaluated. Results showed that regardless of the measure of input or response, the near-fault record generally led to larger strains, curvatures, and drift ratios. Furthermore, residual displacements were small compared to those for columns meeting current seismic code requirements.  相似文献   
38.
This paper presents three-dimensional fi nite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls of the building acted as a seismic resistant element although their contributions were neglected in the design. Hence, the entire structure of a typical frame was modeled and static and dynamic nonlinear analyses were conducted to evaluate the contributions of the brick walls. However, the results of the analyses were considerably overestimated due to coarse mesh discretizations, which were unavoidable due to limited computer resources. This study corrects the overestimations by modifying (1) the tensile strengths and (2) shear stiffness reduction factors of concrete and brick. The results indicate that brick walls improve frame strength although shear failures are caused in columns shortened by spandrel walls. Then, the effectiveness of three types of seismic retrofi ts is evaluated. The maximum drift of the firstoor is reduced by 89.3%, 94.8%, and 27.5% by Steel-confi ned, Full-RC, and Full-brick models, respectively. Finally, feasibility analyses of models with soils were conducted. The analyses indicated that the soils elongate the natural period of building models although no signifi cant differences were observed.  相似文献   
39.
This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen was pseudo- dynamically loaded to indicate three earthquake ground motions of different hazard levels, after which the test specimen was subjected to a pseudo-static loading. This paper focuses on the design, construction and experiment of the test frame and validation of the simulation models. Research shows that a high-strength concrete frame reinforced with high-strength rebars is more eff icient and economical than a traditional reinforced concrete frame structure. In addition to the economies achieved by effective use of materials, research shows that the frame can provide enough strength to exceed conventional reinforced concrete frames and provide acceptable ductility. The test study provides evidence to validate the performance of a high- strength concrete frame designed according to current seismic code provisions. Based on previous test research, a nonlinear FEM analysis is completed by using OpenSees software. The dynamic responses of the frame structure are numerically analyzed. The results of the numerical simulation show that the model can calculate the seismic responses of the frame by OpenSees. At the same time, the test provides additional opportunities to validate the performance of the simulation models.  相似文献   
40.
This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC’09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic responses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the Ωo factor, which shows a mere 30% increase. Based on the observed trends, period-dependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号